Localized surface plasmon resonances arising from free carriers in doped quantum dots.

نویسندگان

  • Joseph M Luther
  • Prashant K Jain
  • Trevor Ewers
  • A Paul Alivisatos
چکیده

Localized surface plasmon resonances (LSPRs) typically arise in nanostructures of noble metals resulting in enhanced and geometrically tunable absorption and scattering resonances. LSPRs, however, are not limited to nanostructures of metals and can also be achieved in semiconductor nanocrystals with appreciable free carrier concentrations. Here, we describe well-defined LSPRs arising from p-type carriers in vacancy-doped semiconductor quantum dots (QDs). Achievement of LSPRs by free carrier doping of a semiconductor nanocrystal would allow active on-chip control of LSPR responses. Plasmonic sensing and manipulation of solid-state processes in single nanocrystals constitutes another interesting possibility. We also demonstrate that doped semiconductor QDs allow realization of LSPRs and quantum-confined excitons within the same nanostructure, opening up the possibility of strong coupling of photonic and electronic modes, with implications for light harvesting, nonlinear optics, and quantum information processing.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Phosphorus-doped silicon nanocrystals exhibiting mid-infrared localized surface plasmon resonance.

Localized surface plasmon resonances (LSPRs) enable tailoring of the optical response of nanomaterials through their free carrier concentration, morphology, and dielectric environment. Recent efforts to expand the spectral range of usable LSPR frequencies into the infrared successfully demonstrated LSPRs in doped semiconductor nanocrystals. Despite silicon's importance for electronic and photon...

متن کامل

The effect of doping Graphene Quantum Dots with K, B, N, and Cl on its emitted spectrum

In this work, the effect of doping Graphene Quantum Dots (GQDs) on their emission spectra has been studied. First, graphene has been deposited on SiC substrate by using sublimation method. Second, doped-GQDs have been distributed on the surface of graphene via drop casting. The structure of the samples have been studied and characterized by X-ray diffraction (XRD), Scanning Electron Microscopy ...

متن کامل

Gold Nanowires: Their Synthesis and Surface Plasmon Resonances

The objective of the project was to fabricate gold nano-rods and study the optical properties of gold nano-particles when coupled to Indium Arsenide quantum dots. The gold nano-rods were synthesized by a seed-mediated growth method using CTAB and BDAC as the surfactants, and the feasibility of changing the aspect ratio of the rods and their Plasmon resonance frequency was studied by varying the...

متن کامل

Heavily-doped colloidal semiconductor and metal oxide nanocrystals: an emerging new class of plasmonic nanomaterials.

The creation and study of non-metallic nanomaterials that exhibit localized surface plasmon resonance (LSPR) interactions with light is a rapidly growing field of research. These doped nanocrystals, mainly self-doped semiconductor nanocrystals (NCs) and extrinsically-doped metal oxide NCs, have extremely high concentrations of free charge carriers, which allows them to exhibit LSPR at near infr...

متن کامل

Tunable infrared absorption and visible transparency of colloidal aluminum-doped zinc oxide nanocrystals.

Plasmonic nanocrystals have been attracting a lot of attention both for fundamental studies and different applications, from sensing to imaging and optoelectronic devices. Transparent conductive oxides represent an interesting class of plasmonic materials in addition to metals and vacancy-doped semiconductor quantum dots. Herein, we report a rational synthetic strategy of high-quality colloidal...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nature materials

دوره 10 5  شماره 

صفحات  -

تاریخ انتشار 2011